The product of two vectors, called the **dot product**, results in a scalar answer (not a vector as you might expect). For this reason, the dot product is also called the **scalar product**. The definition of the dot product is shown in the box to the right.

The dot product is commutative, so \(\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} \).

The distributive property also applies to the dot product, so \(\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} \).

Example: Find the dot product \(\mathbf{v} \cdot \mathbf{w} \) if \(\mathbf{v} = \langle 2, 2 \rangle \) and \(\mathbf{w} = \langle 1, 2 \rangle \).

FINDING THE ANGLE BETWEEN TWO VECTORS

The angle between two vectors can be found by using the formula in the box to the right. If the angle \(\theta \) between two vectors is 0 or \(\pi \), then the vectors are parallel. If the angle between them is \(\frac{\pi}{2} \) (90°), then the vectors are **orthogonal**. "Orthogonal" is another word for **perpendicular**, which means that the vectors meet at a __________ angle. **Two vectors are orthogonal if their dot product is zero.**

Example: Find the angle between the vectors \(\mathbf{u} \) and \(\mathbf{v} \) and state if the vectors are parallel, orthogonal, or neither.

a) \(\mathbf{u} = \mathbf{i} + \mathbf{j} ; \quad \mathbf{v} = -\mathbf{i} + \mathbf{j} \)

First we find the dot product, \(\mathbf{u} \cdot \mathbf{v} : \)

These vectors are ______________________.

b) \(\mathbf{u} = 3\mathbf{i} - 4\mathbf{j} ; \quad \mathbf{v} = 4\mathbf{i} - 3\mathbf{j} \)

First we find the dot product, \(\mathbf{u} \cdot \mathbf{v} : \)

Next we find the magnitudes of \(\mathbf{u} \) and \(\mathbf{v} : \)

\[\| \mathbf{u} \| = \sqrt{\left(\right)^2 + \left(\right)^2} = \]

\[\| \mathbf{v} \| = \sqrt{\left(\right)^2 + \left(\right)^2} = \]

Now plug this information into the formula: \(\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\| \mathbf{u} \| \| \mathbf{v} \|} \rightarrow \theta = \cos^{-1} \)

These vectors are ______________________
DECOMPOSING A VECTOR INTO TWO ORTHOGONAL VECTORS

Sometimes when given two vectors, \(\vec{v} \) and \(\vec{w} \), it is necessary to decompose \(\vec{v} \) into two parts: one part, \(\vec{v}_1 \), that is parallel to \(\vec{w} \), and another part, \(\vec{v}_2 \), that is orthogonal to \(\vec{w} \). The parallel part, \(\vec{v}_1 \), is called the projection of \(\vec{v} \) onto \(\vec{w} \).

Example: Decompose \(\vec{v} \) into \(\vec{v}_1 \) which is parallel to \(\vec{w} \), and \(\vec{v}_2 \) which is orthogonal to \(\vec{w} \).

a) \(\vec{v} = -3\hat{i} + 2\hat{j}, \quad \vec{w} = 2\hat{i} + \hat{j} \)

First we find \(\vec{v}_1 \). \(\vec{v} \cdot \vec{w} = (-3)(2) + (2)(1) = -6 + 2 = -4 \), and \(\|\vec{w}\| = \sqrt{(2)^2 + (1)^2} = \sqrt{5} \).

So \(\frac{\vec{v} \cdot \vec{w}}{\|\vec{w}\|^2} = \frac{-4}{(\sqrt{5})^2} = -\frac{4}{5} \). Then \(\vec{v}_1 = -\frac{4}{5}(2\hat{i} + \hat{j}) \rightarrow \vec{v}_1 = -\frac{8}{5}\hat{i} - \frac{4}{5}\hat{j} \).

Now \(\vec{v}_2 = \vec{v} - \vec{v}_1 \rightarrow \vec{v}_2 = (-3\hat{i} + 2\hat{j}) - \left(-\frac{8}{5}\hat{i} - \frac{4}{5}\hat{j}\right) \rightarrow \vec{v}_2 = \left(-3 + \frac{8}{5}\right)\hat{i} + \left(2 + \frac{4}{5}\right)\hat{j} \rightarrow \vec{v}_2 = -\frac{7}{5}\hat{i} + \frac{14}{5}\hat{j} \).

b) \(\vec{v} = \hat{i} - 3\hat{j}, \quad \vec{w} = 4\hat{i} - \hat{j} \)