Directions: Show all work to receive partial credit. When asked to give exact answers, points will be deducted for providing decimal answers. Each question is worth 5 points. Good luck!

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Convert the angle to D° M' S'' form. Round the answer to the nearest second.
1) 183.82°

Convert the angle in degrees to radians. Express the answer as multiple of π.
2) 54°

Convert the angle in radians to degrees.
3) \(\frac{23}{9} \pi \)

Find the exact value of the indicated trigonometric function of θ.
4) \(\cos \theta = \frac{7}{25}, \quad \frac{3\pi}{2} < \theta < 2\pi \) Find cot θ.
Use transformations to graph the function.

5) \(y = -2 \cos\left(\frac{1}{3}x \right) \)

Graph the function. Show at least one period.

6) \(y = -2 \sin\left(5x + \frac{\pi}{2} \right) \)

Graph the function.

7) \(y = 3 \sec(2x) \)
Find the exact value of the expression.

8) \(\csc \left(\cos^{-1} \frac{\sqrt{3}}{2} \right) \)

Establish the identity.

9) \(\tan u (\csc u - \sin u) = \cos u \)

Find the exact value of the expression.

10) \(\cos \frac{5\pi}{18} \sin \frac{\pi}{9} - \cos \frac{\pi}{9} \sin \frac{5\pi}{18} \)

Establish the identity.

11) \(\sin(x + y) - \sin(x - y) = 2 \cos x \sin y \)
Use the information given about the angle θ, $0 \leq \theta \leq 2\pi$, to find the exact value of the indicated trigonometric function.

12) \(\csc \theta = -\frac{4}{3}, \tan \theta > 0\) \quad \text{Find} \cos(2\theta).

13) \(\tan \theta = \frac{12}{5}, \pi < \theta < \frac{3\pi}{2}\) \quad \text{Find} \sin \left(\frac{\theta}{2}\right).

Establish the identity.

14) \(\sin(5\theta) \sin(8\theta) \cos(5\theta) \cos(8\theta) = \frac{\cos^2(3\theta) - \cos^2(13\theta)}{4}\)

Express the sum or difference as a product of sines and/or cosines.

15) \(\cos \frac{7\theta}{2} + \cos \frac{5\theta}{2}\)
Solve the equation on the interval $0 \leq \theta < 2\pi$.

16) $1 - \sin \theta = \frac{1}{2}$

17) $\sqrt{2} \cos(2\theta) = 1$

Solve the equation. Give a general formula for all the solutions.

18) $\cos(2\theta) = \frac{\sqrt{2}}{2}$

Solve the equation on the interval $0 \leq \theta < 2\pi$.

19) $2\cos^2 \theta - 3\cos \theta + 1 = 0$
20) \[\cos(2\theta) + 6 \sin^2 \theta = 2 \]

EXTRA CREDIT:

21) The altitude of a projectile in feet (neglecting air resistance) is given by

\[y = (\tan \theta)x - \frac{16}{v^2 \cos^2 \theta} x^2, \]

where \(x \) is the horizontal distance covered in feet and \(v \) is the initial velocity of the projectile at an angle \(\theta \) from the horizontal. Find the firing angle (in degrees) of a projectile fired at an initial velocity of 100 feet per second so that it strikes the ground 312.5 feet from the firing point.